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• Variable Camber Continuous Trailing Edge Flaps 

• Flaps distributed over most of the span of the wing 

• Elastomer material between flaps to seal gaps 

• Tailors spanwise lift distribution throughout mission

VCCTEF Concept
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Generic Transport 
Model (GTM)

Common Research 
Model (CRM)
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Motivation

• Early application of VCCTEF on GTM on overspeed case 
indicated wave drag could also be significantly reduced 

• More effective if circular deflection relaxed
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Goals and Methods

• Determine how complex a distributed flap system 
must be to be effective for overspeed drag 
reduction 

• how many spanwise flaps? 

• how many chordwise segments per flap?

• Flap layout trade study 

• Install various layouts with different number 
of spanwise flaps and chordwise segments 

• Optimize flap deflections on all layouts at 
overspeed condition 

• Examine results for trends
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Platform for Trade Study

• Common Research Model (CRM) fuselage/wing/horizontal tail configuration)

• Assume composite wing 

• remove built in deformation from original CRM geometry 

• develop structural model that exhibits greater deformation (about twice original)

• Develop new baseline wing 

• start with original CRM geometry 

• re-optimize twist distribution for 
cruise using methods that 
address aeroelastic effects 

• minimize drag 

• constrain lift 

• maintain trim
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Cart3D BEAM Blender
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Aerodynamic Shape Optimization Architecture
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Modeling the VCCTEF
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Modeling the VCCTEF
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• Flap deflections controlled by Blender “armature” (analogous to a skeleton) 

• Surface triangulation is bound to “bones” 

• Bones can only rotate about hinge lines 

• Sequential flaps bones linked to each other 

• Blended transition between flaps to mimic elastomer material
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In previous work on the GTM, the weights of the engine, fuel, and structure itself were all included in the aero-
elastic analysis. Since the GTM was based on an actual aircraft design, the weights of these components were either
known or could be estimated rather easily. The CRM, on the other hand, is not a fully realized aircraft design since
its original purpose was to act as a validation platform for aerodynamic analysis methods.21 Hence, the weights of
these components are not known. Including these component weights is not crucial for this study since only the final
deformed shape is desired. Alternatively, one could assume these additional component weights are actually built
into the structural model used for this work.

To achieve near-optimal aerodynamic performance at cruise, the CRM wing jig-shape was re-twisted to create a
new baseline design. Note the jig-shape was first created by straightening out the original CRM wing geometry
which incorporated the cruise aeroelastic deformation. Aeroelastic effects were necessarily addressed in this re-
design by employing the methods summarized in Section II. In addition, as was done by Chen et al22 in their aerody-
namic shape optimization of the CRM, a longitudinal trim constraint was also enforced by allowing the design
method to alter the incidence of the horizontal tail. The center-of-gravity for this trim constraint was assumed to be
at 25% mean aerodynamic chord, which is also the reference point specified by Vassberg10 and used by Chen.22 The
optimization problem used to produce this new wing design can be summarized as follows:

minimize: CD (!, "w, it) (1)

subject to: CL (!, "w, it) = CL,cruise = 0.5
CM (!, "w, it) = 0
! ≤ !max

where ! is the flight angle of attack, !max is the maximum allowable angle of attack (to enforce a reasonable con-
straint on cabin deck angle), "w is the twist distribution over the span of the wing, it is the incidence of the horizontal
tail, CD is the aircraft drag coefficient, CL is the lift coefficient, and CM is the pitching moment coefficient about the
reference point. In the end, this optimization is really just the classic problem of drag-minimization at fixed lift with
the added longitudinal trim constraint. For this work, !max is arbitrarily set to 3°.

For the redesign of the more flexible CRM wing, the design variables in the optimization problem included the
flight angle of attack to satisfy the lift constraint, the horizontal tail incidence to satisfy the pitching moment con-
straint, and the twist distribution of the wing. The twist distribution was varied discretely at the six spanwise stations
shown in Figure 6. Between these stations, the change in the wing twist was varied linearly, thus producing a piece-
wise linear change in the spanwise twist distribution of the original CRM wing. Note the results from Reference 4
suggested that the incidence of the wing at the side of the fuselage had a strong effect on the aerodynamic perfor-
mance of the generic transport. Consequently, the root incidence of the CRM wing was allowed to vary. Fortunately,
the CRM fuselage geometry includes a landing gear pod that has a relatively flat surface at the wing intersection,
which allows for some change in the wing root incidence with no loss in geometric integrity. The design framework
is also capable of handling this change in the wing root incidence since it can easily re-intersect the wing with the
fuselage.

Figure 6.  Spanwise stations (red profile curves) used as twist design variables in CRM wing optimization.

The aeroelastic design method shown in Figure 2 was applied to the problem stated in Eq. (1) to obtain an opti-
mized, highly flexible CRM wing design. The convergence of this design optimization problem is shown in Fig-
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Establishing a New Baseline CRM Design

• CRM wing twist distribution re-
optimized with more flexible structure

• Minimize drag (CD) at cruise condition 
(M∞ = 0.85)

• maintain cruise lift (CL = 0.5)

• maintain longitudinal trim (CM = 0)

• cabin deck angle constraint (!max = 3°)

• Design variables

• section incidence at 6 spanwise 
stations (including root), while 
linearly vary change in incidence 
between stations

• angle of attack (helps satisfy lift 
constraint)

• tail incidence (helps satisfy trim)

10
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Convergence of Twist Optimization
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Aeroelastic Design Iteration
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Convergence of Twist Optimization
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Design Iteration
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Optimized Twist Distribution
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Optimized Spanwise Lift Distribution
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Surface Pressure Distribution

15
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Flap Layout Trade Study

• Install systems with varying numbers 
of spanwise flaps (4, 8, 12) and 
chordwise segments (1, 2, 3) 

• Increase cruise speed 

• M∞ = 0.85 ➔ M∞ = 0.88 

• would save 10 minutes on a 5 hour flight 

• Optimize the flap deflections 

• minimize drag  

• maintain cruise lift 

• maintain trim
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minimize: CD (!, ∆flaps, it)  @  M∞ = 0.88

subject to: CL (!, ∆flaps, it) = CL = 0.4665
CM (!, ∆flaps, it) = 0
! ≤ !max = 3°

1
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Performance of Optimized 4-Flap Layouts
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Flap Layout Tip Deflection Drag No Flaps 4x1 4x2 4x3 8x1 8x2 12x2

No Flaps 150.06 0.012620 0.01245

4 x 1 142.84 0.012024 0.01207

4 x 2 140.71 0.011123 0.01113

4 x 3 141.26 0.011068 0.01107

8 x 1 143.52 0.012032 0.01206

8 x 2 0.01010

12 x 2 142.57 0.01095 0.01095
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Lift Distribution on 4-Flap Systems
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Pressure Distributions on 4-Flap Layouts
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Optimized 4-Flap Geometry

• 3-segment deflected flap profile very similar to 2-segment 

• 1-segment deflected flap somewhere in between undeflected 
geometry and deflected 2-segment flap 

• Deflecting flaps moves reflex backward (consistent with 
supercritical airfoil theory)

20
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Performance of All Optimized Flap Layouts
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Flap Layout Tip Deflection Drag No Flaps 4x1 4x2 4x3 8x1 8x2 12x2

No Flaps 150.06 0.012620 0.01245

4 x 1 142.84 0.012024 0.01207

4 x 2 140.71 0.011123 0.01113

4 x 3 141.26 0.011068 0.01107

8 x 1 143.52 0.012032 0.01206

8 x 2 142.85 0.01106

12 x 2 142.57 0.01099 0.01099
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Performance of All Optimized Flap Layouts
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Performance of All Optimized Flap Layouts
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Spanwise Lift Distribution on 2-Segment Systems
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Pressure Distributions on 2-Segment Layouts
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Optimized 4 x 2 Flap Layout Deflections
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Conclusions and Future Work

• Flap layout trade study on highly flexible CRM conducted for 
overspeed off-design case 

• 2-segment flaps found to be much more effective than 
1‑segment flaps, but 3-segment flaps provided only 
incremental improvement 

• 4 spanwise flaps are almost as effective as 12, suggesting 
induced drag is either already near optimal or wave drag 
reduction dominates 

• Verification with viscous analysis 

• Consider other off-design conditions (e.g. maneuver condition)
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